2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
扎根西部大地建设中国特色世界一流大学******
作者:马小洁(兰州大学党委书记)
党的二十大吹响了全面建设社会主义现代化国家、全面推进中华民族伟大复兴的奋进号角,进一步激发了高校自觉肩负起以高等教育高质量发展服务区域高质量发展的使命担当。兰州大学将始终以强烈的政治责任感和历史使命感,学深悟透做实党的二十大精神,更加解放思想、更加主动进取、更加团结奋斗,在西北办好一流大学,不断释放支撑服务中国式现代化的新动能新活力。
增强历史主动,引领事业发展形成新格局。扎根西部、服务国家、引领发展,是兰州大学作为中国高等教育战略布局重要组成部分所应承担的最朴实的社会责任和最主要的历史任务。百十年来,兰州大学自强不息、独树一帜,已成为我国特别是西部地区高水平创新人才培养、基础科学研究和高新技术研发、高层次决策咨询的重要基地,成为国家和区域创新发展体系的重要组成部分。兰州大学将深入贯彻落实党的二十大精神,进一步坚定历史自信、增强历史主动,深刻领悟党和国家发展对高等教育的殷切期待,准确把握学校所处的时代坐标和历史方位,保持战略定力和战略清醒,不断解放思想、转变观念,不断强化“一流”意识,提升干事创业精气神和战斗力,充分激发蕴藏于师生之中的发展伟力。坚持在特色中兴文、在原创中厚理、在厚理上拓工、在创一流中精农、在抓基础上强医,进一步强化基础学科、新兴学科、交叉学科建设,优化专业结构布局,锻造服务高水平科技自立自强的国家战略科技力量,提升服务国家战略和区域经济社会发展能力。
挖掘区域禀赋潜力,塑造学科特色发展新优势。促进西部发展是实现中国式现代化不可或缺的重要一环。一直以来,兰州大学立足西部独特的资源禀赋,在青藏高原、冰川冻土、风沙治理、敦煌学、中亚问题、区域经济等领域,形成了一批原创性引领型的学术高点。新时代新征程,兰州大学将进一步把研究解决学术前沿问题与解决区域经济社会发展现实问题、理论问题相结合,凝练学科方向、塑造优势特色,提升原始创新能力,最大程度展现学科价值。强化问题牵引、团队传承和学科辐射,提升数理化天地生、文史哲政经法等基础优势学科核心竞争力,增强优势特色学科对主流学科发展的原创性贡献,构筑特色优势学科的高原高峰。面向西部现代化产业体系建设,谋划布局新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等领域新兴学科。创新探索基于青藏科考、黄河流域生态保护和高质量发展、推动共建“一带一路”等具体案例的交叉学科,努力在与区域发展同频共振中形成立体化、特色化的学科发展新赛道新优势。
强化有组织科研,彰显战略科技力量新势能。近年来,兰州大学紧紧围绕国家战略需求和区域经济社会发展需要,充分释放基础研究、科技创新潜力,首次合成共价有机框架材料的大尺寸单晶,研制成功首颗极大规模全异步电路芯片,原创性地提出“黄河水系发育模式”,研发出风沙灾害治理新技术,着力解决在种质创新和生命健康等方面对基因功能和作用机理的重大需求,在西部树起了创新驱动、勇创一流的旗帜。未来,兰州大学将进一步增强党建引领和统筹科研高水平发展的能力,点燃各类科研组织和广大科研工作者科研报国的激情和动力,激励引领大家心怀“国之大者”、紧盯“四个面向”,聚焦关键核心技术和重大科学问题,开展原创性引领性科技攻关。持续整合汇聚项目、人才、资源等科研要素,围绕“筑牢国家西部生态安全屏障”等,超常规布局建设一批“打基础管长远”“有特色创一流”的重大项目,全力推进草种创新与草地农业生态系统全国重点实验室建设,打造西部安全重大科研平台、西部高发疾病转化医学与新药研发科教平台等,努力在应用技术研究、关键性技术突破上取得更多新进展。
坚持立德树人,展现人才自主培养新作为。实现高质量发展,教育是根本、科技是关键、人才是基础。兰州大学一直以人才培养见长,毕业生中当选两院院士、获得国家杰出青年科学基金的人数稳居全国高校前列,创造了化学“一门八院士”、地学“师生三代勇闯地球三极”等享誉国内外的“兰大现象”。今后,兰州大学将始终坚持为党育人、为国育才,紧紧围绕“全面提高人才自主培养质量,着力造就拔尖创新人才”这个时代课题,坚持人才强校战略,站在后继有人的高度,加强战略科学家和青年优秀人才培养力度。坚持以德为先、能力为重、全面发展的育人理念,完善一流育人体系,发挥一流学科优势,推进学科优势向专业优势转化、人才优势向育人优势转化、科研优势向教学优势转化。深化“六卓越一拔尖”计划2.0、强基计划、基础学科人才培养基地内涵创新与示范引领,完善导师制,建立优秀本科生提前进入研究生阶段学习的培养模式,实施本研贯通一体化培养。深化专业升级改造,促进“四新”交叉融合,加快培育微专业、交叉学科专业。开展课程存量改革,加强跨学科贯通课程、在地国际化课程建设,推进实验实践课程与社会发展、科技进展的有效衔接。坚持以一流科研成果反哺一线教学,注重用科技前沿问题、重大原始创新问题开阔学生战略眼光、厚植科学素养,培养学生跨学科能力和解决综合复杂问题的能力。坚持“五育并举”,深化“三全育人”,努力培养有理想、敢担当、能吃苦、肯奋斗的时代新人。
《光明日报》( 2022年12月20日 05版)
(文图:赵筱尘 巫邓炎)